Imaginary Bicyclic Biquadratic Function Fields in Characteristic Two

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An explicit treatment of biquadratic function fields

We provide a comprehensive description of biquadratic function fields and their properties, including a characterization of the cyclic and radical cases as well as the constant field. For the cyclic scenario, we provide simple explicit formulas for the ramification index of any rational place, the field discriminant, the genus, and an algorithmically suitable integral basis. In terms of computa...

متن کامل

Establishing the minimal index in a parametric family of bicyclic biquadratic fields

Let c 3 be positive integer such that c; 4c+ 1; c 1 are square-free integers relatively prime in pairs. In this paper we …nd minimal index and determine all elements with minimal index in bicyclic biquadratic …eld K = Q p (4c+ 1) c; p (c 1) c .

متن کامل

Undecidability in Function Fields of Positive Characteristic

We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable in the language of rings without parameters. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2. The proof uses a result by Moret-Bailly about ranks of elliptic curves over function fields.

متن کامل

Undecidability in Function Fields of Positive Characteristic

We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable in the language of rings without parameters. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2. The proof uses a result by Moret-Bailly about ranks of elliptic curves over function fields.

متن کامل

Fast ideal cubing in imaginary quadratic number and function fields

We present algorithms for computing the cube of an ideal in an imaginary quadratic number field or function field. In addition to a version that computes a non-reduced output, we present a variation based on Shanks’ NUCOMP algorithm that computes a reduced output and keeps the sizes of the intermediate operands small. Extensive numerical results are included demonstrating that in many cases our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1999

ISSN: 0022-314X

DOI: 10.1006/jnth.1999.2377